About Tokyo Rope Group

Tokyo Rope was established in 1887 and has been the leader in Japan's wire rope industry. Our global operations are expanding. Our main products are Steel Wire Rope, Fiber Rope, Steel Cord for tire, and CFCC.

Russia Moscow Office •St. Petersburg Plant •St. Petersburg Office USA Michigan CFCC Plant
Michigan Office (TOKYO ROPE USA INC.) Japan Head Office Kitakami CFCC Plant Tsuchiura Plant Kitakami Plant Kitakami Works Sakai Plant Tokyo Seiko Rope Ako Rope Kazakhstan Vietnam Brazil Almaty Plant Binh Duong Plant Sao Paulo Office Kyrgyzstan Bishkek office Thailand Bangkok Office

NIHONBASHI FRONT BLDG. 6-2 NIHONBASHI 3-CHOME CHUO-KU TOKYO 103-8306 JAPAN Tel.: + 81 3 6366 7731, Fax: +81 3 3270 1776

https://tokyorope-intl.co.jp E-mail: inquiry_cfcc@tokyorope.co.jp

Today's Overhead Conductor's market

Current Status

ACSR is a conventional type of conductor which has three drawbacks as follows:

•Heavy steel core

- •Large Thermal Expansion
- Corrosion

Challenge

Transmission Owners are facing the following requirements:

• Huge Electric Demand • Environmental Concern(CO₂) • Sag Violations • Right of Way Issue Construction Cost & Period • Lower Life Cycle Cost

Solution

Next generation conductor cable=

- Low Transmission Loss
- High Transmission Capacity
- Low Sag
- Longevity
- Easy Handling

ACFR Structure

ACFR stands for Aluminum Conductor Fiber Reinforced

CFCC Core **>** Light Weight and Small Thermal Expansion Trapezoidal Aluminum Wire > Large Cross Sectional Area

ALUMINUM CONDUCTOR FIBER REINFORCED

Annealed Aluminum Wire (or TAL / Hard Drawn Wire)

Case Study

Performance Example compared to ACSR					
Design Concept	Transmission Loss	Transmission Capaicty	Sag		
Low Loss	27% Less	Same	Same		
High Capacity	More	120% More	Same		
Low Sag-Low Loss	9% Less	Same	12% Less	*This figure depends on design	
Low Sag-High Capacity	More	103% More	10% Less	and operating conditions.	

Accessories (Dead End Clamp and Mid Span Joint)

Basic Design is the same as those for the conventional ACSR conductor, except for using an aluminum buffer which grabs the CFCC core securely.

Supply Scheme

Tokyo Rope provides CFCC to local conductor producer which will make ACFR. Reference

Standard ACFR Design Example

The following is standard ACFR Design Example. Final design should be agreed with the conductor's manufacturer.

ACFR PRODUCT CODE (Equivalent conventional ACSR)		ACFR 121/17-FA-TT (Dog equivalent)	ACFR 213/28-FA-TT	ACFR 267/37-FA-TT (Panther Equivalent)	ACFR 410/50-FA-TT (Grosbeak Equivalent)	ACFR 492/55-FA-TT (Zebra Equivalent)	ACFR 658/66-FA-TTT (Moose Equivalent)
		(bog equivalent)	(Enner Equivalent)	(Tunner Equivalent)	(Grosbeak Equivalent)		(moose Equivalent)
Mechanical Specifications							
Overall Diameter of Conductor	mm	14	18.29	20.75	25.15	28.14	31.6
Nominal Aluminum Cross-sectional Area	mm ²	121.3	212.7	267.2	407.18	491.8	657.7
Nominal Diameter of Composite Core (from CFCC data sheet)	mm	5.3	6.8	7.8	9	9.5	10.4
Nominal Cross-sectional Area of Core	mm ²	17.2	28.2	37.2	49.5	55.1	66.1
Nominal Cross-sectional Area of the Conductor	mm ²	138.5	240.9	304.3	456.68	546.94	723.8
Ultimate Tensile Strength of Conductor	kN	43.7	72.7	94.8	129.1	146.2	179.1
Rated Strength of Core	kN	36.8	60.3	79.5	105.8	117.7	141.3
Core Nominal Mass per unit length	kg/km	27	44	60	78	86	104
Aluminum Nominal Mass per unit length	kg/km	335	588	738	1124	1358	1819
Conductor Nominal Mass per unit length	kg/km	362	632	798	1202	1444	1923
Maximum Allowable Operating Temperature	°C	180	180	180	180	180	180
Coefficient of Linear Expansion Above Thermal Kneepoint	×10 ⁻⁶ /°C	1.0	1.0	1.0	1.0	1.0	1.0
Coefficient of Linear Expansion Below Thermal Kneepoint	×10 ⁻⁶ /°C	17.8	18.0	17.7	18.2	18.5	18.9
Final Modulus of Elasticity Above Thermal Kneepoint	GPa	122	122	126	126	126	126
Final Modulus of Elasticity Below Thermal Kneepoint	GPa	63.32	62.85	63.67	62.73	62.16	61.48
Electrical Specifications							
Nominal Resistivity of Aluminium at 20°C, DC 63% IACS	ohm/km	0.2307	0.1314	0.1047	0.0686	0.0568	0.0426
Current carrying capacity at maximum operating temperature@180 °C	Amps	674	968	1127	1476	1680	2009
Emergency operating temperature	°C	200	200	200	200	200	200

Note: Current Carrying Capacity is Calculated as per the following Assumptions: Wind Velocity (m/sec): 0.6, Solar Absorption Co-efficient: 0.5, Emissivity: 0.5, Ambient Temperature (°C) : 35, Solar Radiation (Watt/Sq.m) : 1033

Mid Span Joint

*These pictures are for example purposes. Actual design to be decided by the customer's requirements.

CFCC Development History

CFCC core's development was started in the 1980s. Initially, CFCC was used for civil engineering applications. In 2002, Tokyo Rope supplied CFCC core to conductor partners which produce ACFR, and since then, more than 15 years have passed with satisfactory operations.

*CIGRE is international council on Large Electric System

Installed ACFR (Twin Bundle)

Michigan CFCC Plant in USA

CFCC Advantage

CFCC core is uniquely stranded CFRP and has eight advantages:

Non-magnetic	0	No Iron Loss
Lightweight	0	1/5 of Steel
High Flexibility	0	Can be wound to the small Drum
High Corrosion resistance	0	Against acid, alkali, water and UV
High Tensile Fatigue	0	Able to withstand wind vibration
Small Thermal Expansion	0	1/10 of Steel (CFCC: 1.0×10 ⁻⁶ ; Steel : 11
High Modulus	0	Superior to other FRP
Low Creep	0	Similar to Steel

Standard Characteristics

Properties	ltem		
General mechanical properties	Tensile strength Tensile elastic modulus Elongation at break Density		
Static properties	Relaxation Creep strain Coefficient of linear expansion Specific resistance Creep failure load ratio		
Others	Fatigue capacity(Stress range) Bending stiffness Heat resistance Acid resistance Alkaline resistance		

*1: Calculated by nominal cross sectional area

*2: 0.7pu, 1000hrs(20±2°C), according to JSCE-E534.

*3: 0.6pu, 1000hrs(20±2°C)

*4: 20°C~200°C, according to JSCE-E536.

*5: Tests of CFCC 1×12.5¢ according to JSCE-E533 "Test Method for Creep Failure of Continuous Fiber Reinforcing

Materials" gave a load ratio of 0.85 at 1 million hours. *6: Average load is 75% of breaking load. The number of cycles is 2×10⁶, according to JSCE-E535. pu: breaking load

Standard Specification of CFCC

D (Configi	esignation uration dia	n ameter)	Diameter (mm)	Nominal cross sectional area (mm ²)	Breaking load (kN)	Unit Weight* (g/m)	Tensile Modulus* (GPa)
	U	5.0φ	5.0	19.6	41.9	30	135
	1×7	5.3φ	5.3	17.2	36.8	27	122
	1×7	6.8φ	6.8	28.2	60.3	44	122
	1×7	7.8φ	7.8	37.2	79.5	60	
	1×7	8.5φ	8.5	44.1	94.2	69	
	1×7	9.5φ	9.5	55.1	117.7	86	
ĕĞŎ	1×7	9.9φ	9.9	59.9	128.0	95	126
	1×7	10.8 <i>φ</i>	10.8	71.3	152.4	112	120
	1×7	12.5 <i>φ</i>	12.5	95.4	203.9	147	
	1×7	15.2 <i>ϕ</i>	15.2	141.1	301.5	224	
	1×7	21.2φ	21.2	274.5	586.6	432	

		1×7 7.8¢ НТ Туре
(MPa)	*1	2.137
(GPa)	*1	126
(%)		1.70
		1.60
(%)	*2	1.3
	*3	0.07×10 ⁻³
(×10 ⁻⁶ /°C)	*4	Less than 1
(μΩcm)		3,000
	*5	0.85
(N/mm ²)	*6	780
(kN•cm ²)		56.9
(%)		180°C(Operating)
(C)		200°C(Emergency)
		Superior to steel
		Almost the same as steel

*Reference value